

MRC

FOCUS4

A molecularly stratified randomised controlled trial programme (and a novel trial design for targeted therapies)

R Kaplan

MRC Clinical Trials Unit at UCL, London

Research

MRC

National Institute for

Health Research

Clinical

MRC

Fundamental challenges in oncology trials

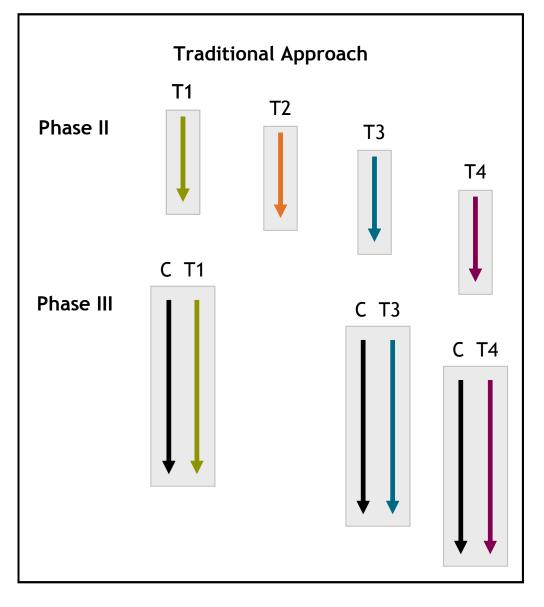
- How can we speed up development and testing, shortening time to patient access?
- How do we assess activity in early phase trials to improve our success rate in novel agent development?
- How can we predict which patients will respond to a new agent/regimen?

Clinical

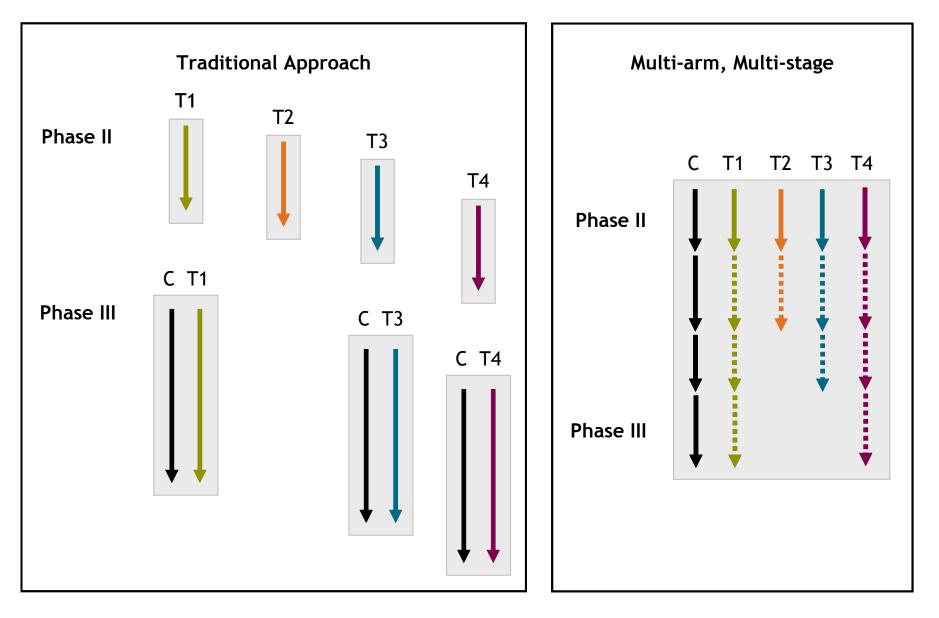
Why we need new trial designs

• Many new agents available

National Institute for


Health Research

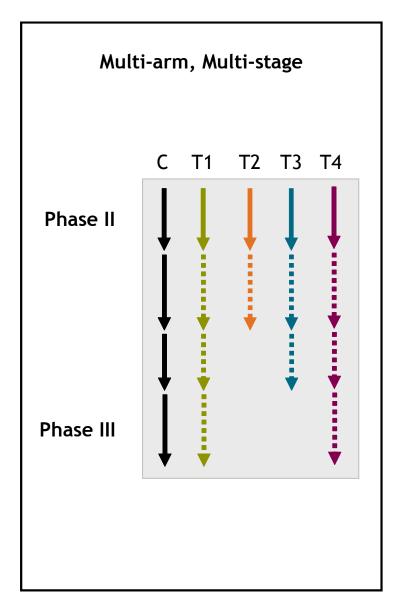
- Each takes years to confirm clinical benefit
- Track record of (phase III, registration) success not yet especially good
- Biologic pathways becoming understood
 - biomarker stratification expected to enrich population & improve likelihood of success
 - (but many 'predictive' markers not validated)



- For initial testing
 - Identify informative clinical settings
 - (regardless of whether a good setting for licensing)
 - Biomarker-enrich
 - (can subsequently expand population and stratify)
 - Seek strong signal of activity
 - (ambitious HR)
- Multi-stage trials
- Multi-arm trials (test several agents at once)
- 'Umbrella' or 'rolling' trial structure

Traditional approach to testing

Multi-arm multi-stage (MAMS) approach

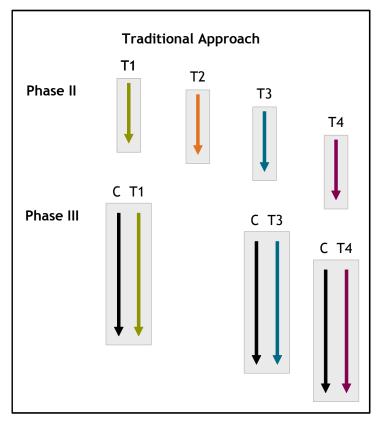

Multi-arm multi-stage (MAMS) approach

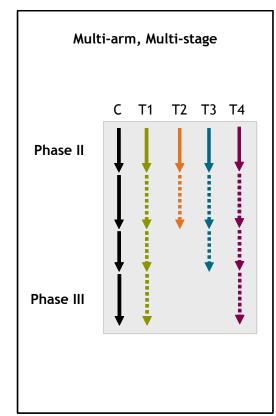
Multi-arm

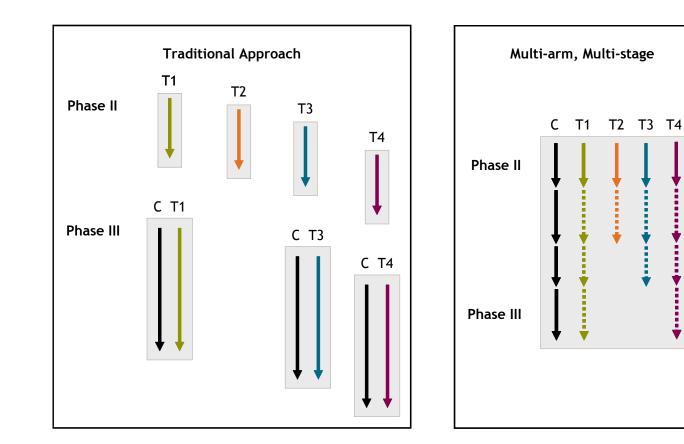
• Test many relevant agents

Multi-stage

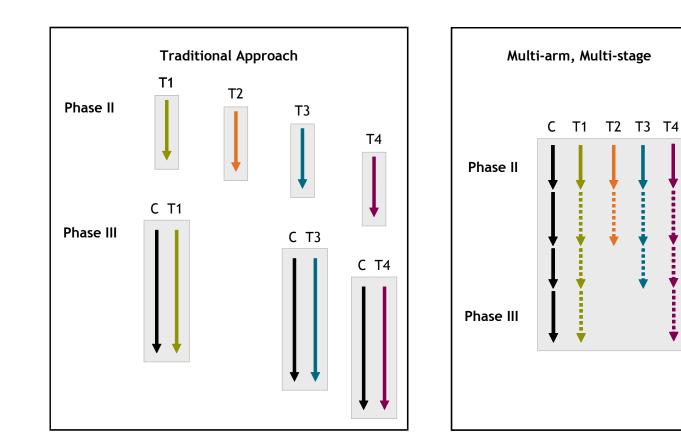
• Ask if reasons to *continue* investigating a treatment?

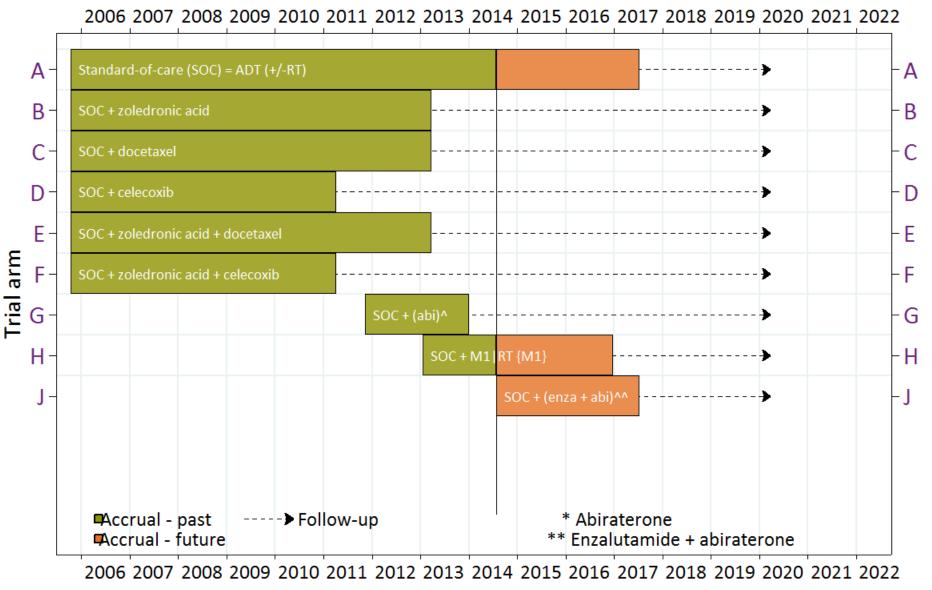





- MRC Advantages of MAMS trials
- 1. Fewer patients
- 2. Less overall time

- Concurrent assessment of agents
- Randomise from start
- One seamless trial
- One protocol \rightarrow Less bureaucracy




STAMPEDE: Initiation

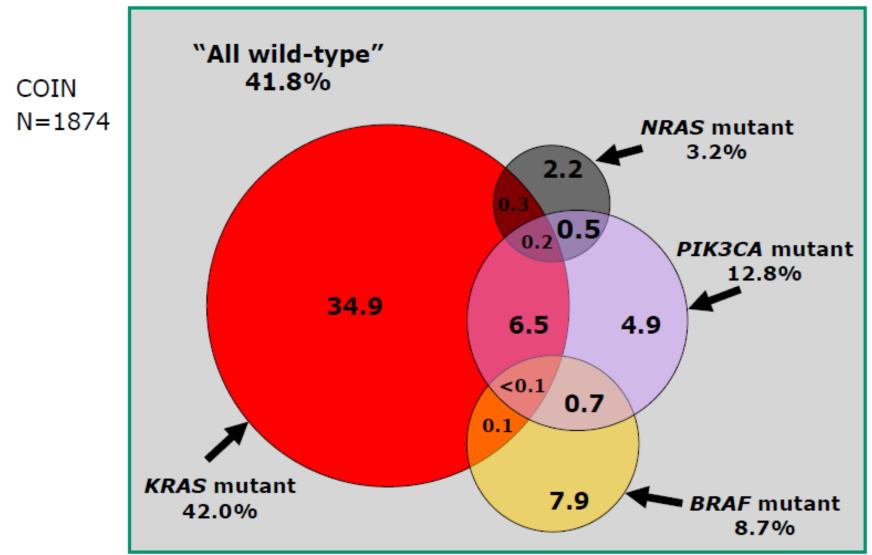
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Г	+														2015			
A -	St	Standard-of-care (SOC) = ADT (+/-RT)										>						
B-	so	SOC + zoledronic acid										>						
C-	so	SOC + docetaxel										>						
D-	so	SOC + celecoxib										>						
E -	so	SOC + zoledronic acid + docetaxel									>							
F-	SOC + zoledronic acid + celecoxib									>								
				past future		-> Fol	llow-u	р										
	2	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	202

Oct-2005: Start of trial

STAMPEDE: Enzalutamide plus abiraterone comparison to be activated

Jul-2014: Third new comparison activated


CRC Genomic heterogeneity

(Potentially identify biologically & clinically distinct subgroups)

Clinical Trials

Unit

MRC

Why conventional designs are unsatisfactory

- Usually depend on availability of a validated biomarker
 - and full validation is itself a lengthy process
- Biomarkers are validated at different times and are usually not all ready at once
- Separate biomarker-based trials are inefficient:
 - either many screened patients are not eligible
 - or both marker selected and unselected patients are included

Why conventional designs are unsatisfactory

- Some prospective designs aim to evaluate both a new treatment and a biomarker within one trial
 - 'biomarker stratified' design inefficient because need to size trial on the effect in all patients, which is likely to be modest
 - 'marker by treatment interaction' design inefficient because need to size on the difference between the effect of the treatment in biomarker + and - patients (an interaction)
- FOCUS4 is an attempt to move the field forward on the basis of partially-supported, putative biomarker classification and adapt to developments over time

Research

MRC

Clinical

What is FOCUS4?

- An adaptive enrichment design integrated programme of parallel, molecularly stratified randomised comparisons in patients with advanced/metastatic colorectal ca
 - who are stable or responding to 1st-line chemotherapy
 - it takes advantage of the UK-preferred planned chemo break to test the efficacy of novel agents (vs placebo) before resistance to standard agents occurs
- Intended to encompass all biomarker defined/enriched cohorts, and to be adaptable to new biomarker developments
- 'Multiplexed markers / multiplexed trials'
- A collaboration between academia & pharma industry

MRC

Clinical

MRC

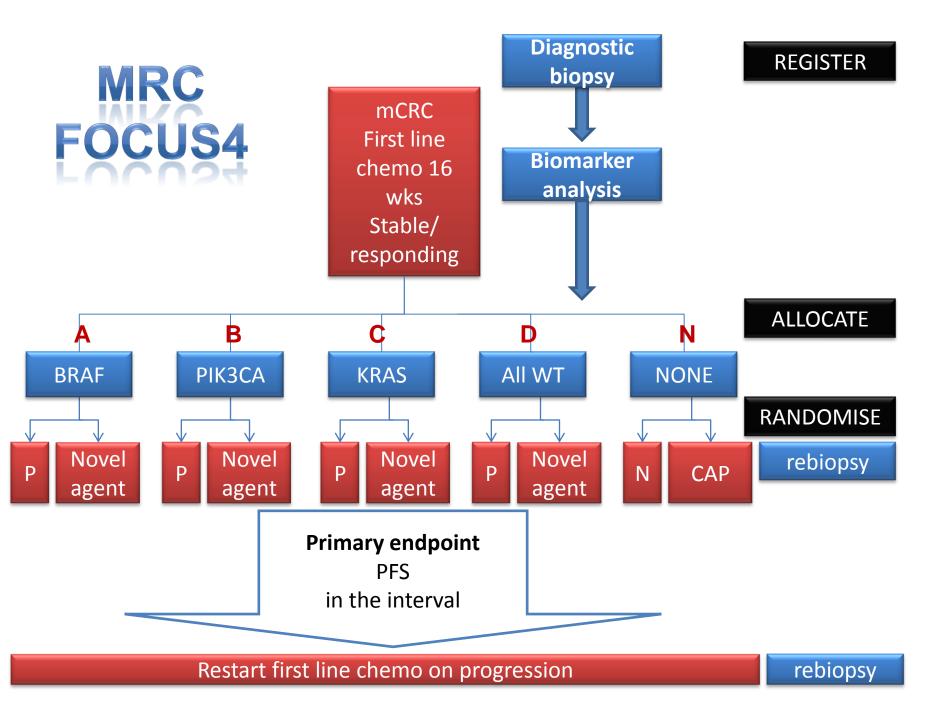
FOCUS4 aims

- To test rationally selected targeted drugs for single agent or combined novel-novel activity
 - as demonstrated by an increase in PFS in the chemotherapy-free interval
 - following first line chemotherapy in biomarker enriched subpopulations
- Phase 2/3 structure: first seeks PFS signal of activity in initial stages; then can continue as a definitive phase 3 trial in any or all of the cohorts, using PFS and OS endpoints

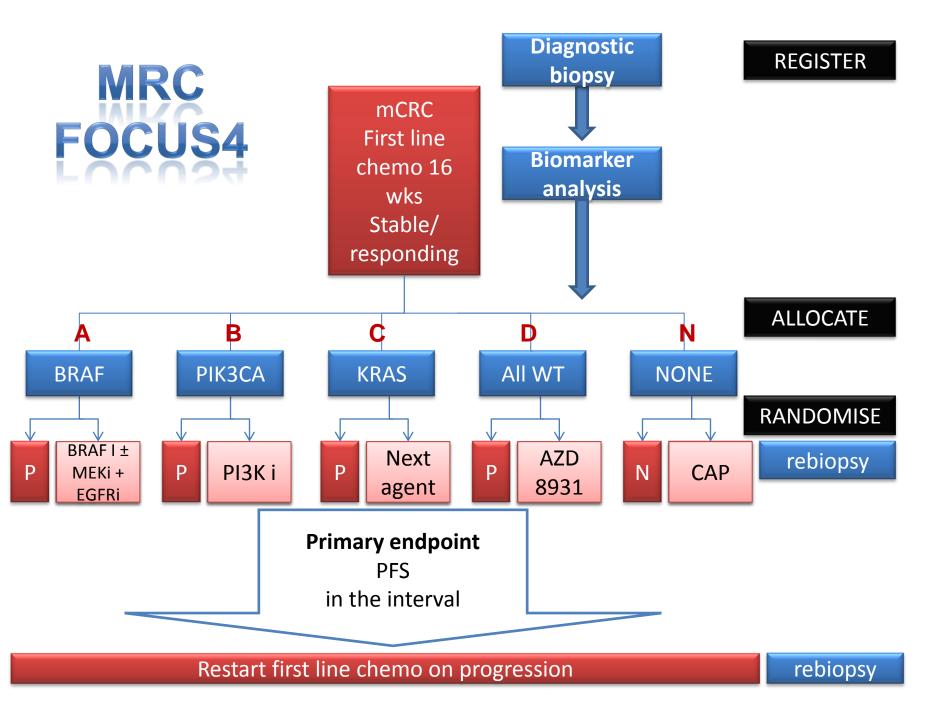
Research

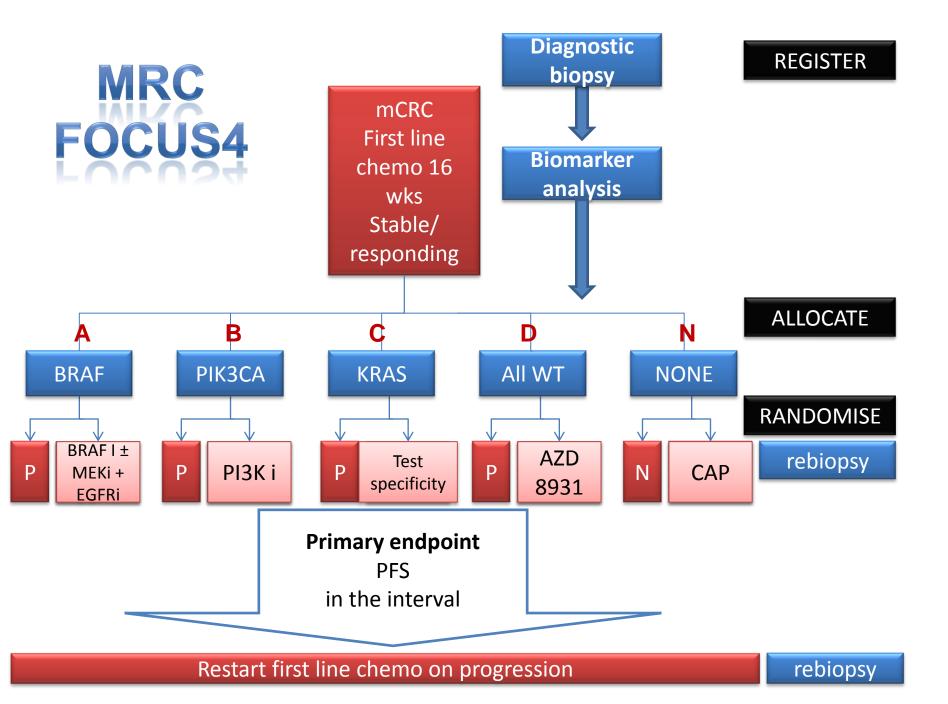
National Institute for

Health Research




Clinical



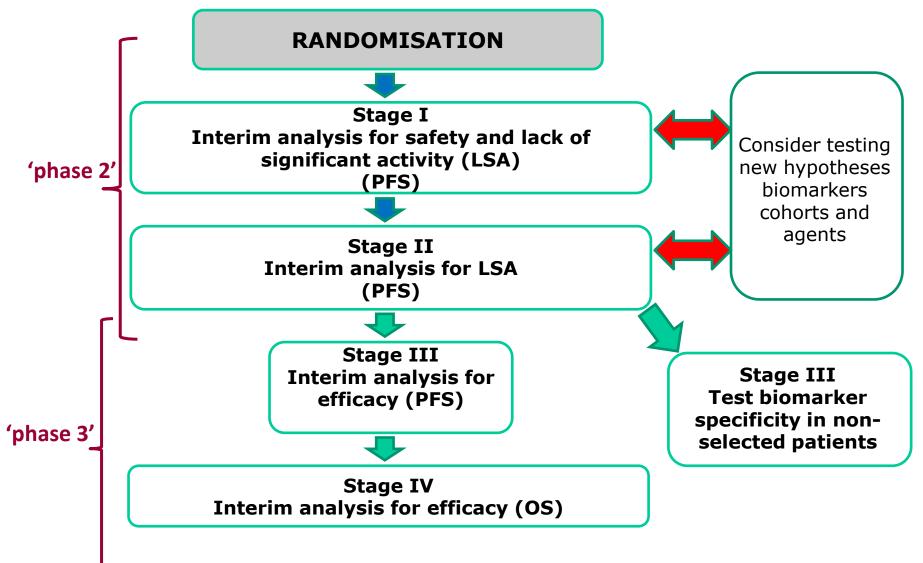

Intermediate endpoints

- Use of intermediate endpoints in agent development – for early proof of principle and go/no-go decisions
- 'Intermediate' ≠ 'surrogate' for registration

Efficacy and Mechanism

Evaluation programme

FOCUS 4: design considerations


National Institute for

Health Research

Each biomarker/treatment comparison has 4 stages:

MRC Research Council

- 2 lack of activity/signal-seeking stages, where randomisation can be ceased (phase II, PFS endpoint)
- 2 efficacy stages (phase III, with PFS and OS endpoints)
- If a treatment passes the 2 lack of activity stages (looks promising)
- Aim to assess activity in an 'unselected cohort'
 - A parallel randomised trial of that treatment, using one or more of the other cohorts in FOCUS4
- If treatment does not pass an activity stage, can consider testing new hypotheses or agents

Clinical Trials

Unit

MRC

Projected patient accrual per stage

<mark>Molecular</mark> cohort	Randomised allocation ratio	Phase -	Outcome and stage	Target HR	Max number of events required: total (control arm)	Estimated cumulative analysis time (<mark>months</mark>)	Max number of pts required
	2:1	2	PFS - I	0.5	41 (16)	<mark>20.4</mark>	61
BRAF		2	PFS - II	0.5	76 (28)	32.5	97
mutation		3	PFS - III	0.5	118 (42)	46.5	139
mutation			OS - IV (potential)	0.65	217 (79)	100.4	301
PIK3CA	2:1	2	PFS - I	0.65	107 (40)	<mark>17.0</mark>	170
mutation			PFS - II	0.65	197 (71)	26.5	264
		3	PFS - III	0.65	303 (107)	37.2	373
and/or PTEN loss			OS - IV (potential)	0.7	289 (109)	54.6	546
KDAC	2:1	2	PFS - I	0.65	109 (41)	<mark>16.1</mark>	177
KRAS		2	PFS - II	0.65	198 (72)	22.8	273
or NRAS			PFS - III	0.65	302 (107)	31.4	378
mutation		3	OS - IV (potential)	0.7	287 (109)	50.6	574
5055		2	PFS - I	0.65	109 (41)	<mark>20.0</mark>	180
EGFR		2	PFS - II	0.65	198 (72)	30.6	275
depend-	2:1		PFS - III	0.65	301 (107)	42.3	381
ent		3	OS - IV	0.7	289 (109)	60.8	547

(potential)

289 (109)

Clinical Trials

Unit

MRC

 Φ

Clinical

MRC

Advantages to FOCUS4 design (2

- Uses molecularly enriched cohorts & ambitious HRs to maximise possibility of detecting promising new treatments and rejecting minimally active ones
- Tests each (presumed) biomarker cohort separately, against its own control (addressing biomarker prognostic effects)
- Does not test cohorts/agents against each other

Based on MAMS design:

- Initial emphasis is phase II in intention (signal seeking)
- But can continue efficiently (seamlessly) into phase III

MRC

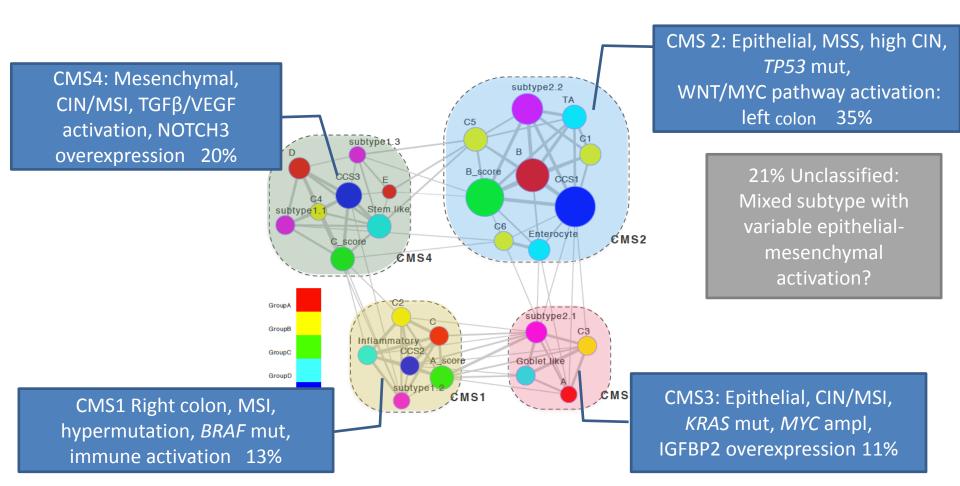
Research

Clinical

Advantages to FOCUS4 design (2

- Allows for study when biomarkers are incompletely characterised and/or not fully validated
- 'Umbrella' structure allows for efficient inclusion of less common biomarker cohorts
- Efficient platform for ascertaining specificity of any positive results in relation to biomarker selection used
- Adaptive: allows for efficient incorporation of new information and/or drugs into a large ongoing trial
- FOCUS4-N answers an important maintenance chemo question when some biomarker-selected cohorts are temporarily closed

FOCUS 4: design considerations


- When new external information emerges . . .
 - Biomarker refined

MRC

- Treatment ineffective
- FOCUS 4 can continue with necessary amendment
 Prospective/retrospective change to an arm
 - Cease further randomisation to an arm
- Adaptive design means that we can do this as a protocol amendment while rest of trial continues
- Tissues and bloods collected to explore
 - Refinement of biomarkers
 - New potential biomarkers

Understanding disease biology

Colorectal Cancer Subtyping Consortium > 4000 cases

Integrated analysis by CRCSC of gene expression profiles suggest 4 consensus molecular subtypes in CRC

Dienstmann R, Guinney J, Delorenzi M, De Reynies A, Roepman P, Sadanandam A, et al. Colorectal Cancer Subtyping Consortium (CRCSC) identification of a consensus of molecular subtypes. ASCO Meeting Abstracts. 2014 June 11, 2014;32(15_suppl):3511

CRCSC – Individual groups' subtypes

SIB	\mathbf{G}_{A}	Surface crypt		Lower crypt	CIMP	+ Mesenchyma	I Mixed
CONTRE LE CANCER LA LIQUE comités	G _B	CIN Immune down	dMMR	KRASm	csc	CIN Wnt up	CIN normal
agendia' decirg conce	G _c	A type		Bt	ype		C type
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE	G _D	Inflammatory	Goblet	Transit Amp	lifying	Stem-like	Enterocyte
am	$\mathbf{G}_{\mathbf{E}}$		CCS1		сс	S2	CCS3
	\mathbf{G}_{F}	1.1	1.2	1.3	2.1	2.2	
Ţ	ĊGA	MSI/CIMP		CIN		Invasive	

- 1) Update biomarkers as they evolve
- 2) Introduce new treatments either in new biomarker defined group or if treatment is inactive
- Open each comparison to biomarker-negative patients for treatments which show sufficient activity in biomarker-positive patients
- 4) During times when a comparison is not open, patients will be offered randomisation to FOCUS4-N or another comparison if biologically justified

MRC

Lesson 1 - FOCUS4A Don't best guess the science!

The context dependency of mutations Why V600E isn't V600E

MRC

Lesson 2 – FOCUS4B & C Two pathways are tougher than one

And pertinent models do tell us something

FOCUS4 trial design considerations

Experimental arms

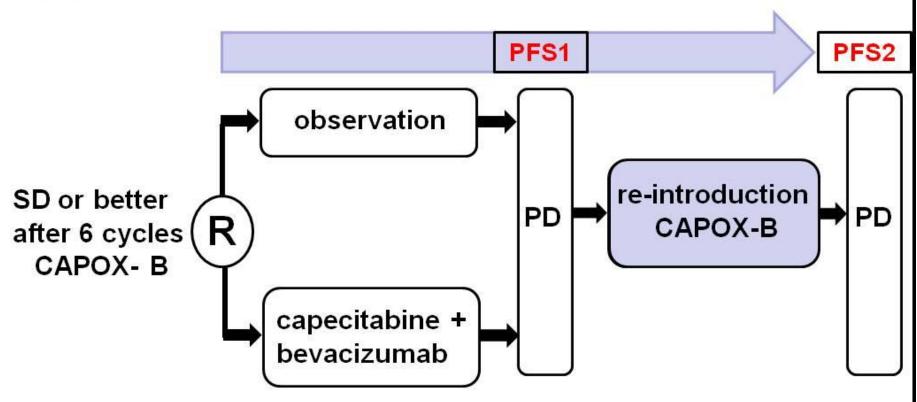
- Trametinib <u>or</u> Dabrafenib + Panitumumab . . . or
- Dabrafenib + Trametinib + Panitumumab

Control arm

- Placebo . . . or
- Continued maintenance chemotherapy
- Assume same target HR for these comparisons as previously; HR=0.5 for PFS (stages 1 to 3) and HR=0.65 for OS (stage 4)

MRC

Medical Research Council National Institute for Health Research



Lesson 3 The criticality of *trying* to keep the control arm contemporary Maintenance, time out and the CDF

- Stratification factors: prior adjuvant therapy, serum LDH, response to induction treatment, WHO PS, institution
- Primary endpoint: PFS2
- PFS2 is considered to be equal to PFS1 for patients in whom CAPOX- B is not reintroduced after PFS1 for any reason

Antibodies and the CDF

- Bevacizumab delisted in first line CRC from March 2015.
- Cetuximab and Panitumumab approved in first line combination in RAS wildtype
- Bev approved in second line with FOLFOX
- Cetux / pan approved in third line therapy for RAS wildtype

FOCUS4 Trial Group

Sponsors - MRC CTU

Trial Managers: Data Manager: Trial Assistant: COG managers: Statistician: Project Lead: Clinical Research Fellow: Programme Leads:

Trial Management Group

Overall CIs: Trial CIs:

Safety lead: Scotland: NCRN advisors: Pharmacy: Nurse specialist: Patient reps:

Biomarker Specialists

Cardiff: Leeds: Cheryl Pugh, Riya Bathia Krishna Letchemanan Helen Fisher Anna Bara, Lynda Harper David Fisher Louise Brown Kai-Keen Shiu Rick Kaplan, Max Parmar

Tim Maughan & Richard Wilson Gary Middleton (A), Harpreet Wasan (B), Richard Wilson (C), Richard Adams (D), Tim Maughan (N) Will Steward Leslie Samuel Gina Dutton & Jane Beety Elizabeth Hodgkinson & Nicola Stoner Sandie Wellman Malcolm & Jan Pope

Bharat Jasani, Rachel Butler Phil Quirke, Susan Richman