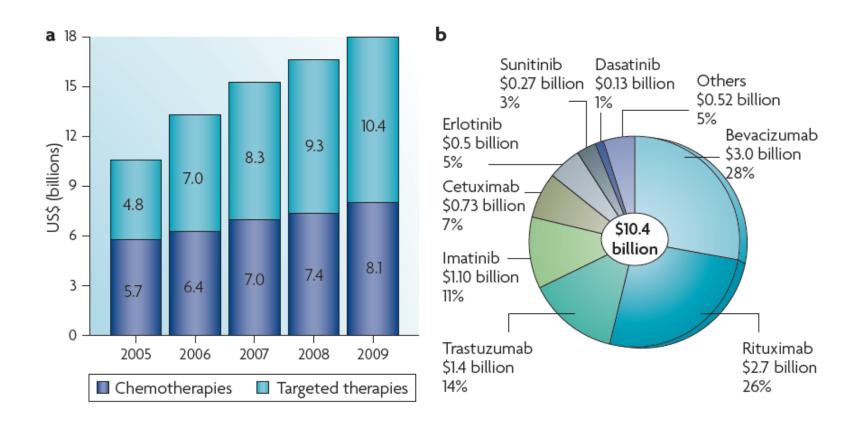


ECMC JING Meeting Session: 15:50 Nicholson Building, U of Birmingham, January 2014

Imaging in Clinical Trials

Professor Vicky Goh Professor of Cancer Imaging, King's College London Consultant Radiologist, Guy's & St Thomas' Hospitals

Acknowledgements



Kings College London: G Cook, M O'Doherty, S Barrington, P Marsden, G Charles-Edwards, T Schaeffter, M Siddique, A Weeks, J Spicer, D Sarker, T Ng, A Tutt, J Burackewski, C Yip, B Taylor, F Davnall, G Ljungvist, M Selmi, A Liu, J Scott, S Aurakzai, I Sowemimo Guy's and St Thomas': S Gourtsoyianni, N Griffin, J Parikh, S Connor, A Williams, M George, A Gaya, M Leslie, D Landau, R Mason, M Lei, T Guerrero Urbano, J Glendenning, S Keevil, J Spence **Mount Vernon Hospital:** I Simcock , J Stirling, NJ Taylor, J Milner, J Shekhdar, B Sanghera, PJ Hoskin, R Glynne-Jones, P Nathan, M Harrison, S Mawdsley, S Li, D Woolf, A Makris, A Gogbashian, WL Wong, AR Padhani **Royal Marsden Hospital**: A Reynolds, N Vasudev, DM Koh, D Collins, M Leach, G Brown, H Mandeville, J Larkin, M Gore **University College Hospital, London:** S Halligan, SA Taylor, M Rodriguez-Justo, K Miles, B Ganeshan, S Punwani, A Groves National Cancer Centre, Singapore: QS Ng, TS Koh, CH Thng **CRUK/EPSRC** Comprehensive Cancer Imaging Centre Funding DOH/NIHR Biomedical Research Centre Funding; NIHR HTA programme; Cancer Research UK, Breast Cancer Campaign, Prostate Cancer UK, Radiological Research Trust, Siemens Healthcare, GE Healthcare

Clinical Trials in Perspective

16,000 cancer related trials listed in Clinical Trials.gov (2009)

Aggarwal S. NATURE REVIEWS | DRUG DISCOVERY VOLUME 9 | JUNE 2010 | 427

Challenges for Imaging in Cancer

Tumour Phenotyping

Assessment of treatment response

Can we improve tumour phenotyping?

 Important biological characteristics may not be depicted by conventional imaging Can we improve imaging response assessment?

- Better responsive/predictive biomarkers?
- Detect response at an earlier stage?

Types of Clinical Trials

Phase I	Phase II	Phase III
 Small no. of patients Safety/Toxicity/Dosage 	 Small no. of patients Drug effectiveness Safety 	 Large no. of patients Randomisation Tested vs standard treatment
Question: Is the agent safe & is there biological activity?	Question: Does the drug work sufficiently well?	Question: How well does the drug work compared to what we have?
King's London Go/N	lo go Go/	No go

IN A MIN (MIN PARTNERS

Role of Imaging ?

Phase I

- Phase II
- Small no. of patients
- Safety/Toxicity/Dosage
- Small no. of patients
- Drug effectiveness
- Safety

Phase III

- Large no. of patients
- Randomisation
- Tested vs standard treatment

- Prospective end-point to estimate the benefit of treatment
- Objective treatment response (RR)
- Classification of response:
 - Complete remission
 - Partial remission
 - Stable disease
 - Progressive disease

Role of Imaging ?

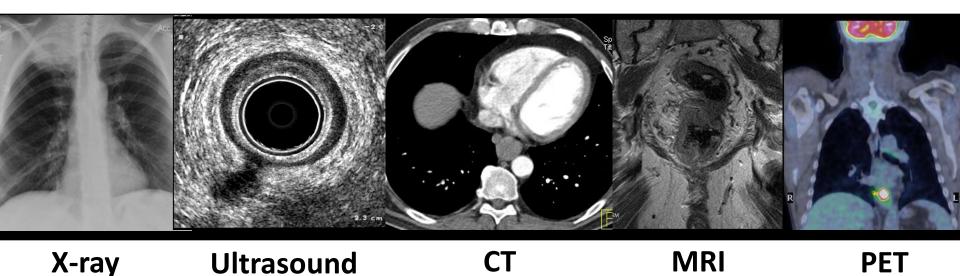
Phase I

- Small no. of patients
- Safety/Toxicity/Dosage

Phase II

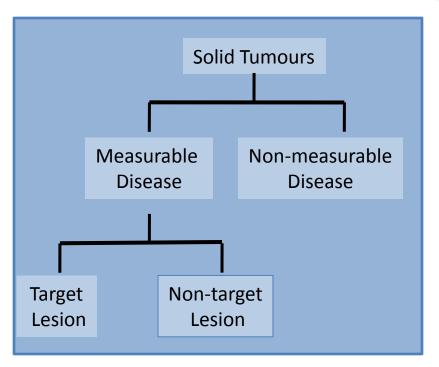
- Small no. of patients
- Drug effectiveness

Safety


Phase III

- Large no. of patients
- Randomisation
- Tested vs standard treatment

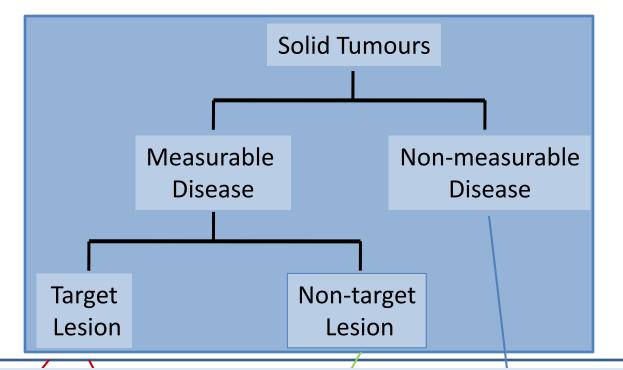
- End-point to selecting drugs for further
 Phase III studies
- Objective treatment response (RR)
- Classification of response:
 - Complete remission
 - Partial remission
 - Stable disease
 - Progressive disease



Imaging Modalities Used For Response Assessment

New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1)

E.A. Eisenhauer^{a,*}, P. Therasse^b, J. Bogaerts^c, L.H. Schwartz^d, D. Sargent^e, R. Ford^f, J. Dancey^g, S. Arbuck^h, S. Gwytherⁱ, M. Mooney^g, L. Rubinstein^g, L. Shankar^g, L. Dodd^g, R. Kaplan^j, D. Lacombe^c, J. Verweij^k


Eisenhauer et al. Eur J Cancer 2009;45:228-47

Lesion >1cm Reproducibly measured Selection must reflect different sites Max: 5 lesions; 2 per organ

Classification of Response:

- Complete remission
- Partial remission
- Stable disease
- Progressive disease

- Response criteria for solid tumours
- Response based on changes to sum of the longest diameters of target lesions
 - Longest diameter irrespective of shape change subsequently
 - Nodes: short axis NOT longest dimension
- Changes in burden of non-target lesions & non-measurable disease also taken into account

Response criteria for evaluation of target lesions

Complete Response (CR):

Disappearance of all target lesions (TL). All nodes <10 mm

Partial Response (PR):

>30% decrease in the sum of TL diameters

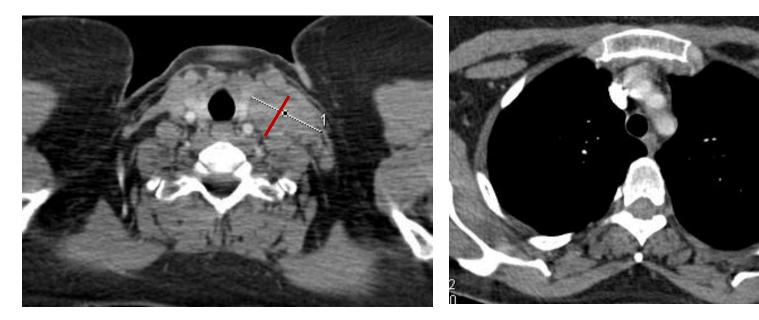
Stable Disease (SD):

Neither PR nor PD

Progressive Disease (PD):

> 20% increase in the sum of TL diameters Absolute increase of at least 5 mm

Any new lesion = progressive disease

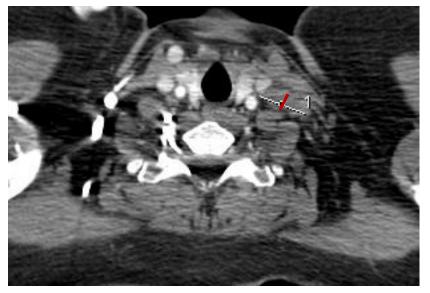

Eisenhauer et al. Eur J Cancer 2009;45:228-47

Target lesion

Non-target lesion

Node: Short axis: 2.5cm

Node: Short axis: 1.0-1.5cm


Baseline

Sum of maximal diameter = 2.5 cm

Target lesion

Node: Short axis: 1.0 cm

Non-target lesion

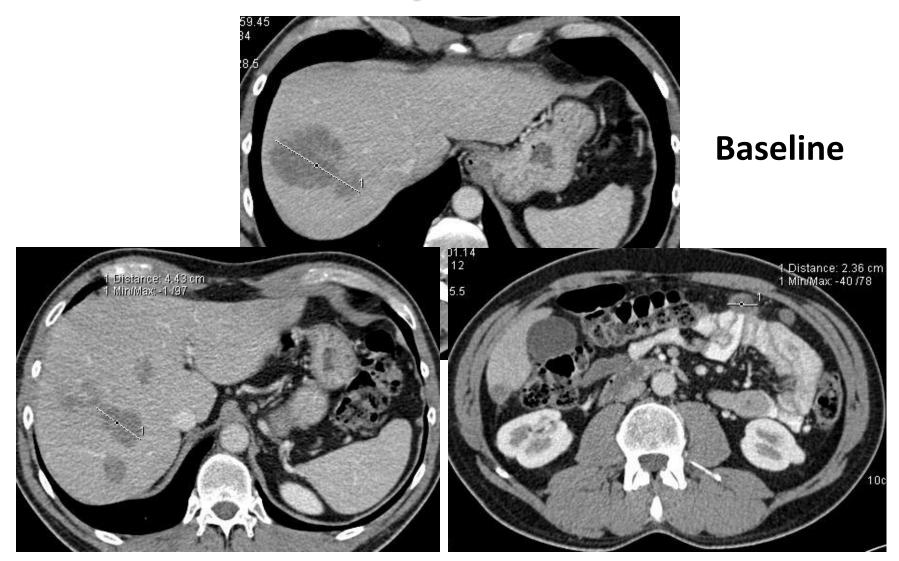
Node: Short axis: <1.0cm

Post 2 cycles % change: 2.5-1/2.5*100=60% decrease

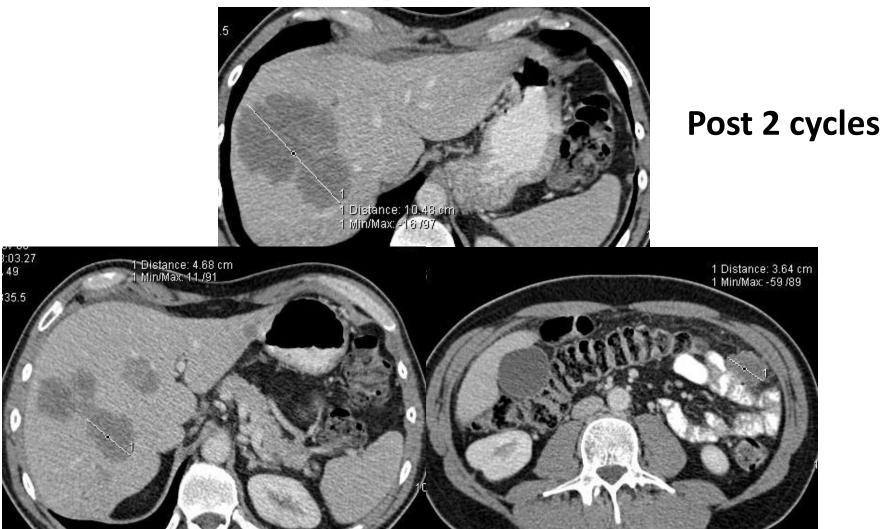
Baseline

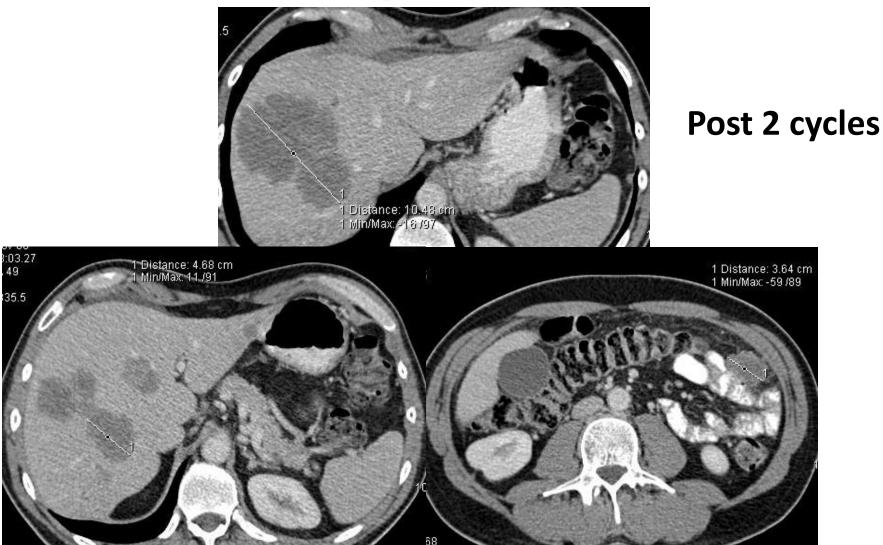
Sum of maximal diameter = 12.9 + 8.3 = 21.2 cm

Post 2 cycles


Sum of maximal diameter = 12.1 + 11.3 = 23.4

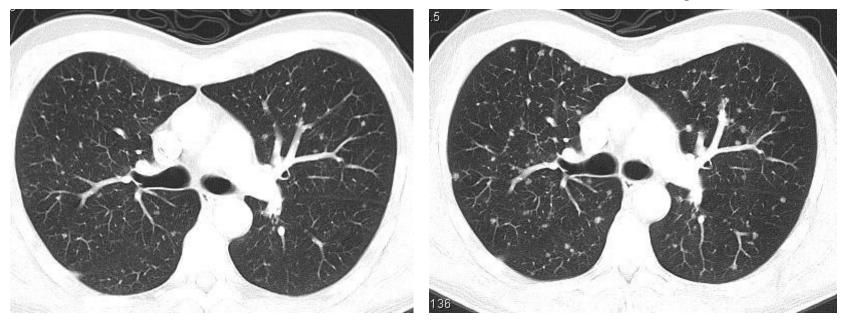
% change = (23.4-21.2)/21.2*100 = 10% increase


Stable Disease



Sum of max diameters= 7.5 +4.5 + 2.4 = 14.4

Sum of max diameters= 10.5 + 4.7 + 3.6 = 18.8


68

% change = 18.8- 14.4 / 14.4 * 100 = 30.6 increase%

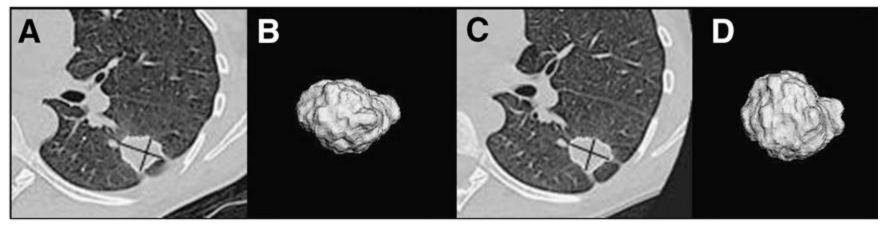
Baseline

Post 2 cycles

Non Measurable Disease: Increase

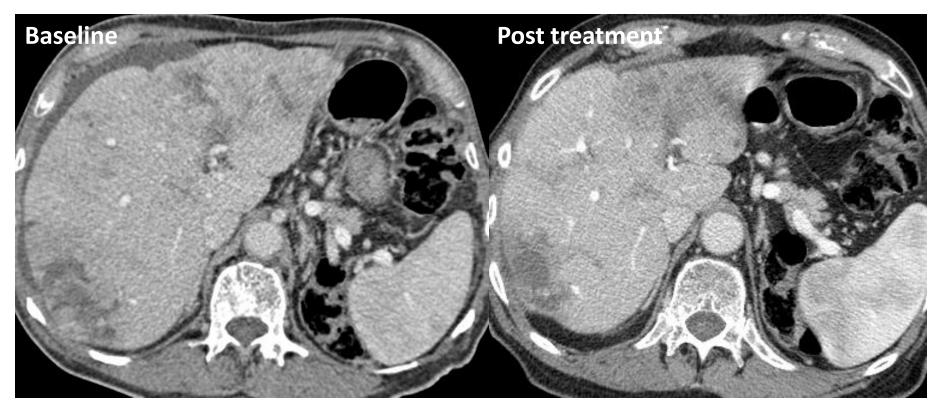
Progressive Disease

RECIST 1.1 Assessment


Does it work in practice?

- Imaging established & widely available in the clinic
- High patient acceptability
- Reproducible
- Response categorisation clinically meaningful & reflects clinical outcome

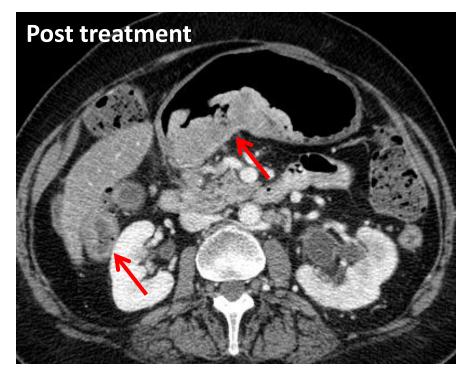
Imaging Evaluation: Limitations



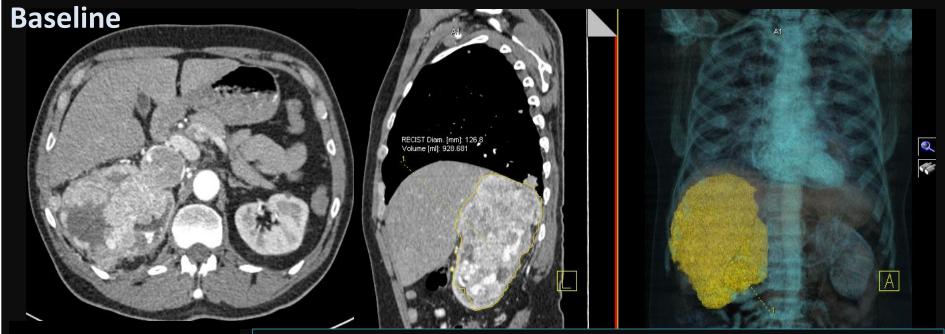
Change in uni, bi-dimensional measurements & volume: From: Zhao et al. JNM 2009 0.4%, 24.4%, & 33.2%

- May not reflect changes in z-axis
- Uni & bi-dimensional measurements are adequate surrogates for changes in tumour volume only if these changes occur in a spheroid manner

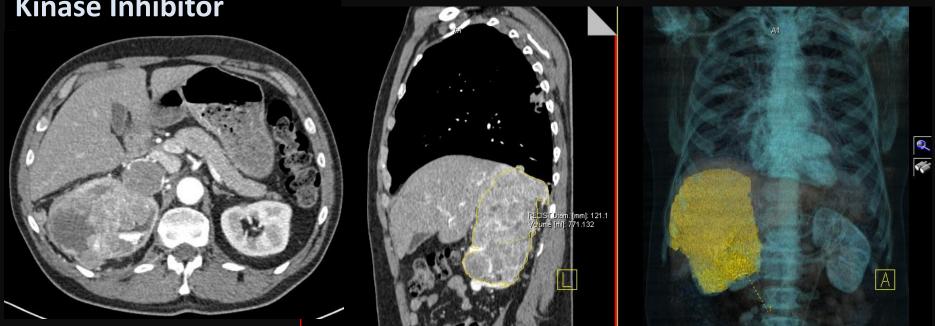
Imaging Evaluation: Limitations


Background changes may make response evaluation difficult: Schirrous change in liver

Imaging Evaluation: Limitations

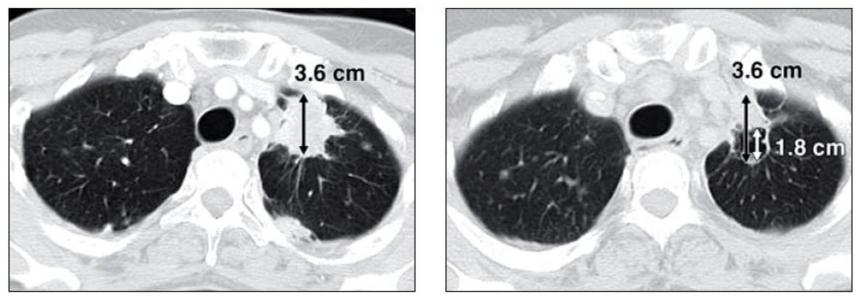


Target lesions: Change in other morphological characteristics are not part of categorisation



Post Tyrosine Kinase Inhibitor

RECIST RESPONSE: STABLE DISEASE 12.7 to 12.1cm


Response Assessment: Beyond RECIST

Response criteria	Based on	Tumour type
Modified RECIST	Size (Arterial phase)	НСС
EASL	Size (Arterial phase)	HCC
Crabb	Size & cavitation	NSCLC
Lee	Size & cavitation	NSCLC
Choi	Size & enhancement	GIST
Modified Choi	Size & enhancement	Renal cell cancer
MASS/SACT	Size & enhancement	Renal cell cancer
PERCIST	Size & metabolic response	All

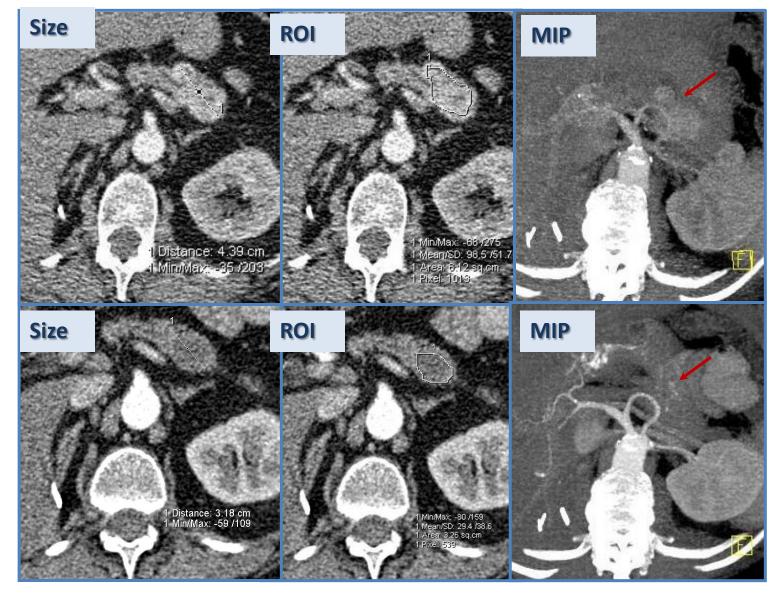
Ongoing work on validation in clinical trials

Size & Cavitation: Crabb

From: Nishino et al. AJR 2012; 198:737-745

Cavitation is taken into account & subtracted from the total diameter

Crabb et al. J Clin Oncol 2009; 27:404–410



Size & enhancement: Choi & Modified Choi Criteria

Response Criteria	Partial Response	Stable Disease	Progressive Disease
RECIST	>30% size reduction	<30% size reduction or <10% size increase	>10% size increase
Choi	>10% size reduction OR >15% attenuation reduction	<10% size reduction OR <15% attenuation reduction	 >10% size increase & does not meet attenuation criteria of PR New lesions
Modified Choi*	>10% size reduction AND >15% attenuation reduction	<10% size reduction AND <15% attenuation reduction	>10% size increase & does not meet attenuation criteria of PR New lesions

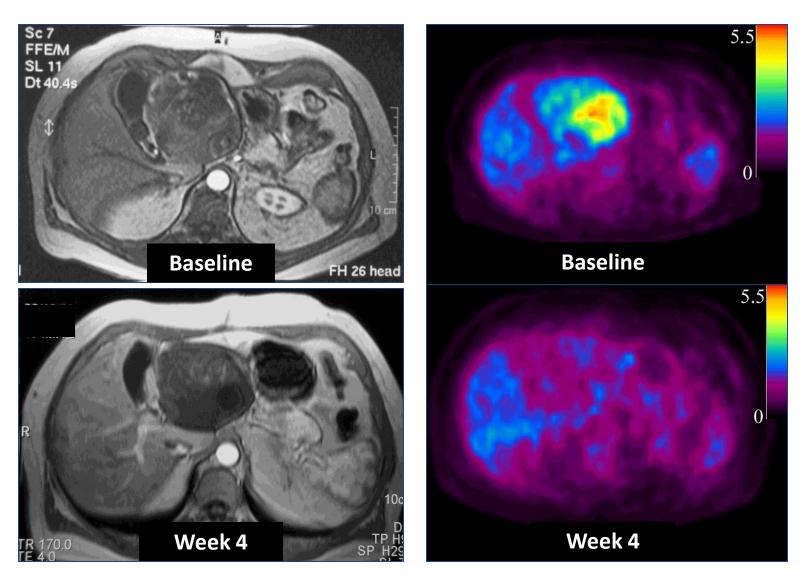
*Nathan et al. Cancer Biol Ther. 2010;9:15-9

Size change 29%, density change 71% SD by RECIST & PR by Choi & modified Choi criteria

Size & metabolic response: PET response criteria

From RECIST to PERCIST: Evolving Considerations for PET Response Criteria in Solid Tumors

Richard L. Wahl^{1,2}, Heather Jacene¹, Yvette Kasamon², and Martin A. Lodge¹


¹Division of Nuclear Medicine, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; and ²Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland

J Nucl Med 2009; 50:122S-150S

MRI: T1 + contrast

¹⁸F-FDG PET

Rate metabolic response is achieved reflects cell kill: > 10⁷ cells lower limit of PET detection

PERCIST

PERCIST 1.0

- Measurable target lesion is hottest single tumor lesion SUL of "maximal 1.2-cm diameter volume ROI in tumor" (SUL peak).
 SUL peak is at least 1.5-fold greater than liver SUL mean + 2 SDs (in 3-cm spherical ROI in normal right lobe of liver). If liver is abnormal, primary tumor should have uptake > 2.0 × SUL mean of blood pool in 1-cm-diameter ROI in descending thoracic aorta extended over 2-cm z-axis.
- Tumor with maximal SUL peak is assessed after treatment. Although typically this is in same region of tumor as that with highest SUL peak at baseline, it need not be.
- Uptake measurements should be made for peak and maximal single-voxel tumor SUL. Other SUV metrics, including SUL mean at 50% or 70% of SUV peak, can be collected as exploratory data; TLG can be collected ideally on basis of voxels more intense than 2 SDs above liver mean SUL (see below).
- 4. These parameters can be recorded as exploratory data on up to 5 measurable target lesions, typically the 5 hottest lesions, which are typically the largest, and no more than 2 per organ. Tumor size of these lesions can be determined per RECIST 1.1.

- Complete Response:
 Disappearance of all disease
- Partial Response:
 >30% decrease FDG SUL_{peak} (AND -0.8 SUL units), <30% size increase & no new sites
- Stable disease: Neither PR not PD

Progressive Disease: >30% increase FDG SUL_{peak} (AND +0.8 SUL units), increase in TLG volume, new lesions

EORTC PET Response Criteria

Complete Response:

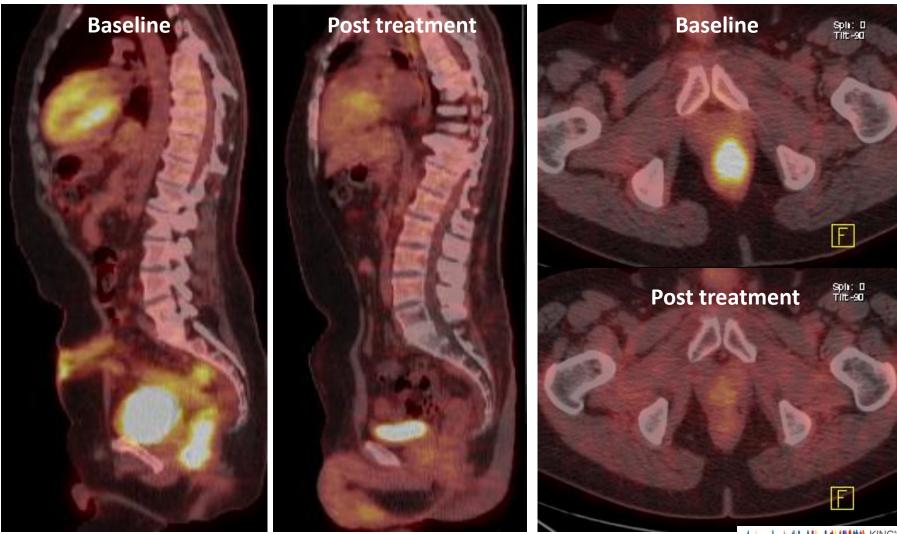
Disappearance of all uptake

Partial Response:

>25% decrease FDG SUV_{mean} A reduction in the extent of the tumour [18F]-FDG uptake is not a requirement for partial metabolic response

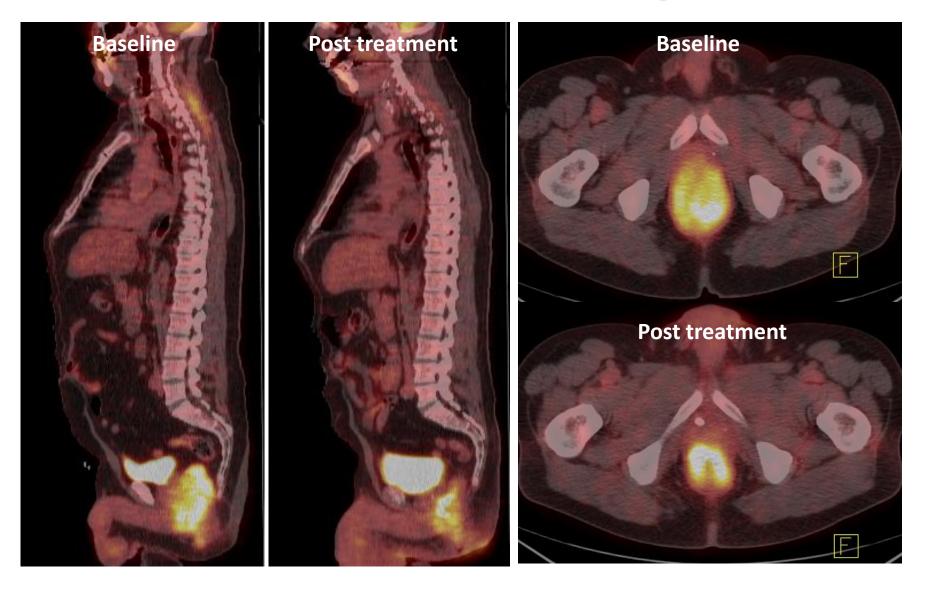
Stable disease:

Neither PR not PD


Progressive Disease:

>25% increase FDG SUV_{mean} visible increase in the extent of [18F]-FDG tumour uptake (20% in the longest dimension) or the appearance of new [18F]-FDG uptake in metastatic lesions

Young et al. Eur J Cancer. 1999;35:1773–1782.



Complete Metabolic Response

HEALTH

Partial Metabolic Response

Role of Imaging ?

Phase I

- Small no. of patients
- Safety/Toxicity/Dosage

Phase II

- Small no. of patients
- Drug effectiveness
- Safety

Phase III

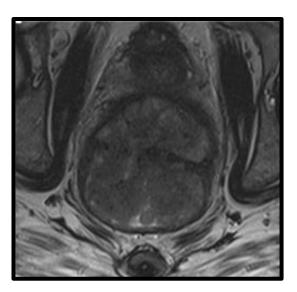
- Large no. of patients
- Randomisation
- Tested vs standard treatment

 Exploratory imaging biomarker of drug efficacy

What Determines Choice of Imaging Method?

Phase I	Phase II	Phase III
 Small no. of patients Safety/Toxicity/Dosage 	 Small no. of patients Drug effectiveness Safety 	 Large no. of patients Randomisation Tested vs standard treatment

- Purported mechanism of action of drug
- End points being collected
- Appropriateness of imaging method
 - Technical issues : Reproducibility, etc.
 - Local expertise
 - Cost

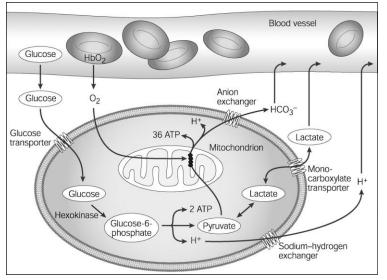

What Can We Measure?

- Cellular metabolism
- Vascularization
 - Perfusion
 - Angiogenesis
 - Hypoxia
- Cellular proliferation, differentiation, survival & apoptosis

FDG

H20DCE-CTIntegrinDCE-MRIF-MISOISW-MRICu-ATSM

CholineDW-MRIFLT1H-MRS(Annexin)



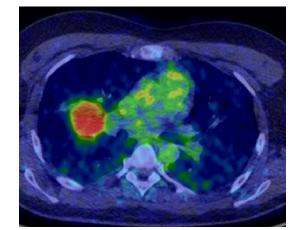
Cellular Metabolism

FDG PET/CT Assessment of cellular metabolism

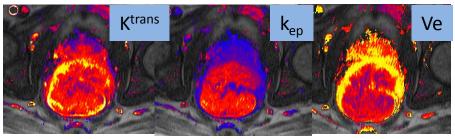
From: Warburg. J Gen Physiol 1927; 8:519-530.

- Change from oxidative phosphorylation to glycolysis may occur despite adequate oxygen supply in tumours
- Upregulation of glucose transporter protein in tumours

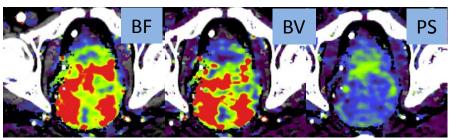
FDG PET/CT


Perfusion & Angiogenesis

Water PET: Provides information regarding perfusion


Integrin $(\alpha_{v}\beta_{3})$ **PET:** ¹⁸**F-Galacto-RGD** Provides information of the degree of tumour angiogenesis

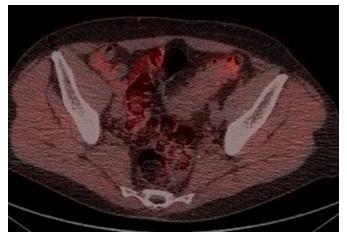
DCE-MRI and DCE-CT


Parameters indirectly reflect perfusion, hypoxia & the functioning microvasculature

: ¹⁸F-Galacto-RGD PET/CT

Dynamic contrast enhanced MRI

Dynamic contrast enhanced CT

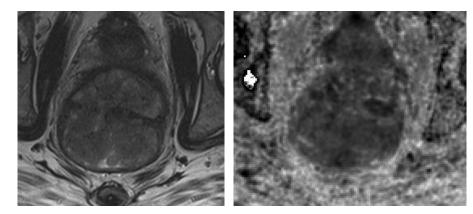


Нурохіа

Hypoxia PET

Provides information of the level of perfusion & tumour oxygenation

¹⁸F-fluoroimidazole (F-MISO) PET
 ⁶⁴Cu-ATSM PET



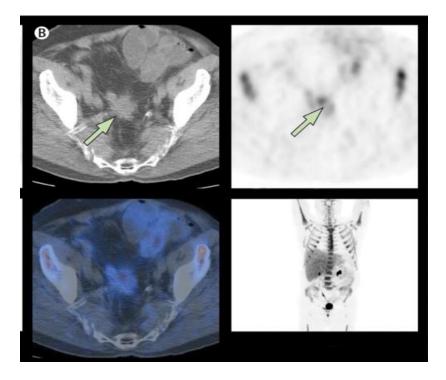
F-MISO PET/CT

Intrinsic susceptibility weighted MRI

Sensitive to paramagnetic deoxyhemoglobin in red blood cells in perfused vessels

Provides information of red cell delivery & level of blood oxygenation

Intrinsic susceptibility weighted MRI



Proliferation Apoptosis

3'-deoxy-3'-¹⁸F-fluorothymidine (FLT) PET Informs on active DNA synthesis

Annexin-PET

Informs on apoptosis. ¹²⁴I-labelled or ¹⁸F-labelled annexin Have showed potential in animal studies

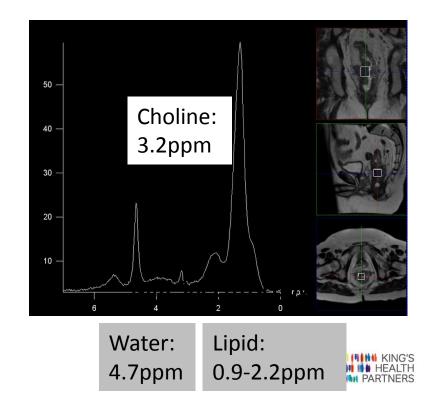
The Lancet Oncology Volume 8, Issue 9 2007 822 - 830

Proliferation Apoptosis

Diffusion weighted MRI

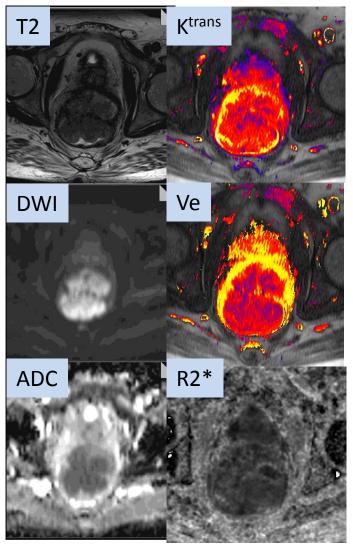
Assessment of water diffusion

Informs on cell density, extracellular space tortuosity & integrity of cellular membranes b800 ADC


Diffusion weighted MRI

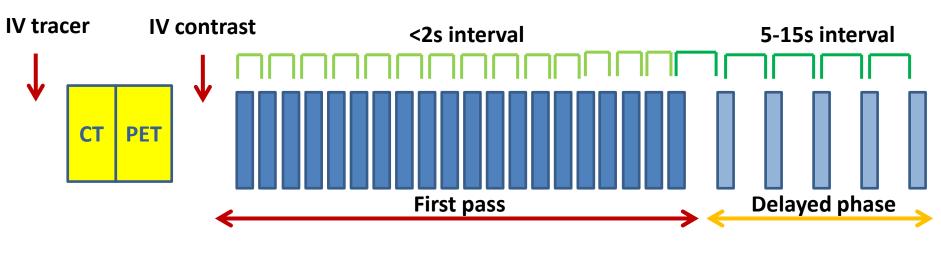
1H-MRI Spectroscopy

Informs on cell density, & cellular membrane turnover


Common metabolites:


Choline: cell membrane synthesis & degradation Free Lipids: necrosis & apoptosis

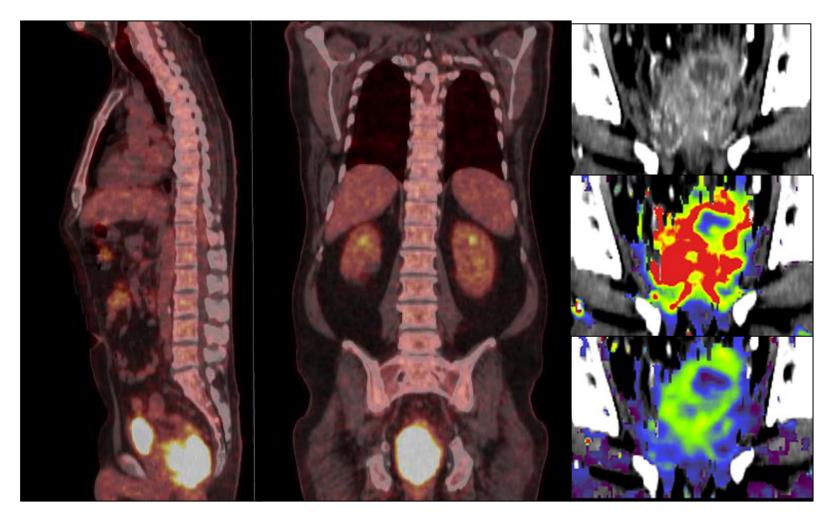
Imaging Signatures



Post therapy

Multi-modality approaches

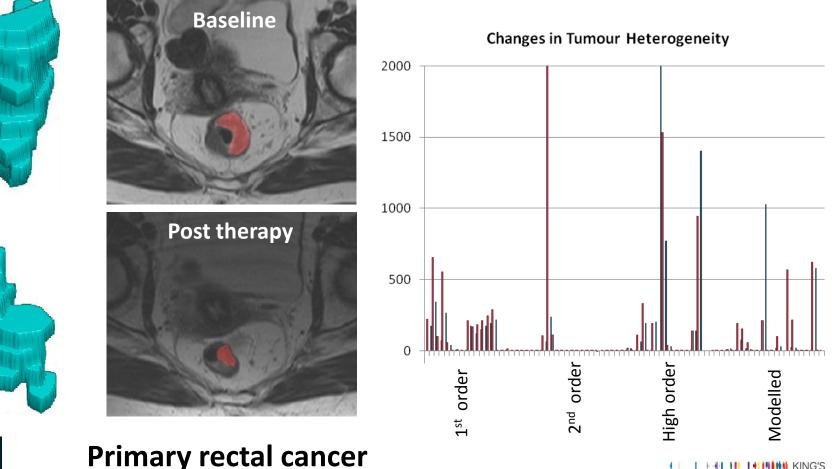
PET/CT acquisition


Dynamic contrast enhanced helical acquisition

Single combined examination

Multi-modality approaches

Vascular – metabolic relationship



Imaging Response

Criteria	Response	Response	Response	Response
Tumour Size Change	+	-	-	-
Vascular Response	+	+	+/-	-
Cellular Response	+	+	+/-	-
Overall response	Responder	Functional Responder	Partial Functional responder	Non- responder
Outcome	Good			Poor

Functional Mapping of Heterogeneity in Treatment Response

Challenges for Novel Imaging Methodologies in Clinical Trials

Novel imaging biomarkers

- Increasing number available
- Challenges for translation
 - Technical validation
 - Biological validation
 - Validation as a trial end point
 - Health economic evaluation

Single expert

Multiple Centres

Challenges for Novel Imaging Methodologies in Clinical Trials

Validation of novel imaging methodologies for use as cancer clinical trial end-points

D.J. Sargent^{a,*}, L. Rubinstein^b, L. Schwartz^c, J.E. Dancey^d, C. Gatsonis^e, L.E. Dodd^b, L.K. Shankar^b

Criteria necessary prior to definitive evaluation studies

Technology stable & broadly available Imaging acquisition parameters specifiable Normal ranges defined Standardised interpretation Documented reproducibility

Sargent et al. EJC 2009

Challenges for Novel Imaging Methodologies in Clinical Trials

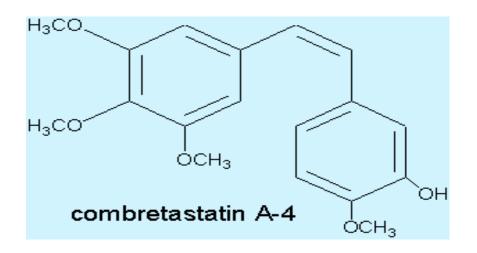
Validation of novel imaging methodologies for use as cancer clinical trial end-points

D.J. Sargent^{a,*}, L. Rubinstein^b, L. Schwartz^c, J.E. Dancey^d, C. Gatsonis^e, L.E. Dodd^b, L.K. Shankar^b

Table 2 – Early and late phases of end-point validation.											
Attribute	Early phase validation	Late phase validation									
Goal	Individual patient level outcome prediction	Trial level outcome prediction									
Setting	Single randomised trials or uniformly treated patients from non-randomised trials	Meta-analysis of randomised clinical trials									
Methods	Correlation analyses between end-points within patients	Correlation analyses between trial level effects on both end- points									

For an imaging end point to serve as an early accurate indicator of promising treatment effect it needs to correlate with Phase III end points i.e. PFS, OS

Sargent et al. EJC 2009


Summary

- Imaging has an important role in clinical trials
- Objective response assessment; trial end point
- RECIST 1.1 remains the international standard for response assessment
- Other response criteria may be appropriate but require further validation
- Imaging biomarkers may have a role in early phase clinical trials as a PD tool
- Challenges remain to implementation of novel imaging biomarkers

Case Example: CA4P

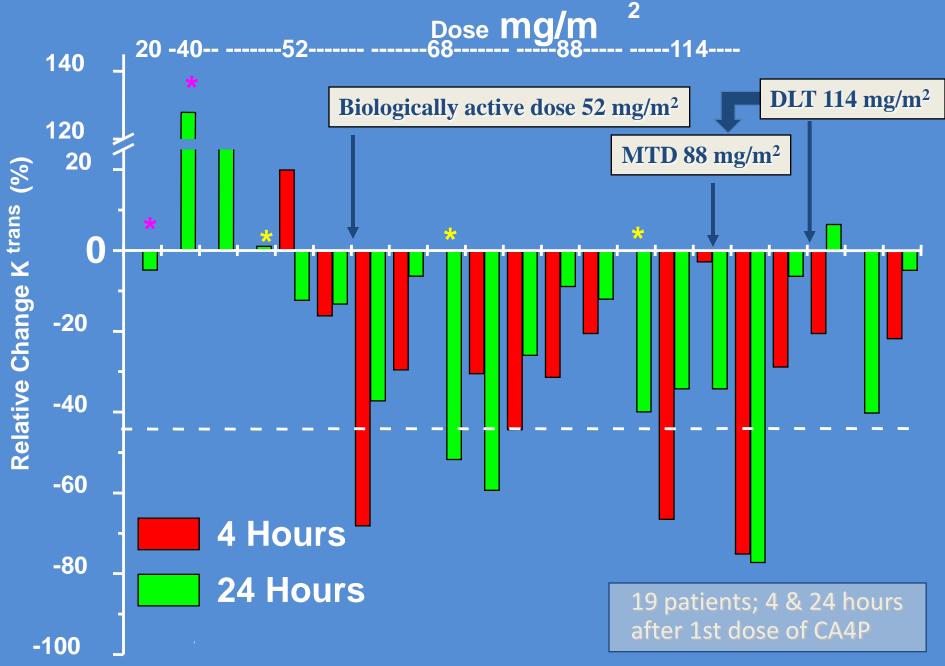
- Combretum caffrum
- Bark of the African Bush Willow tree
- Used as a tonic, as well a poison for Zulu spears

CA4P Mechanism

Vascular disrupting agent Selective to immature tumour vessels

> Rapid change in endothelial cell shape Increase in permeability Further increase of already high interstitial fluid pressure Vascular collapse and shutdown

CA4P Mechanism


untreated tumors 3.0 blood flow (mls•g⁻¹•min⁻¹) 0.75 2.25 1.5 0 **CA-4-P** treated tumors 0.08 0.15 0.23 0.3 blood flow (mls•g-1•min-1) 0

Copyright ©1999 American Association for Cancer Research

Tozer et al. Cancer Res 1999

Galbraith SM, et al. J Clin Oncol 2003;21:2831-42.

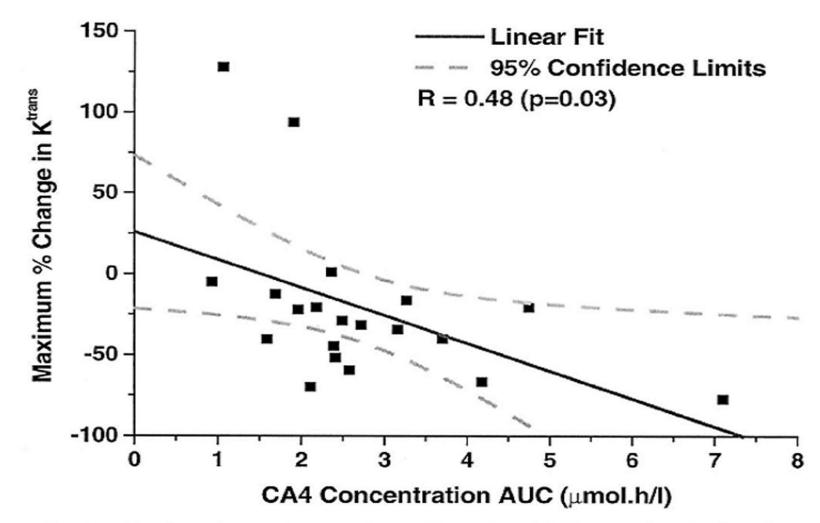


Fig 4. Absolute change in tumor $\log_{10} K^{\text{trans}}$ 4 and 24 hours after the first dose of combretastatin A4 phosphate for patients in the phase I trial.

Galbraith SM, et al. J Clin Oncol 2003;21:2831-42

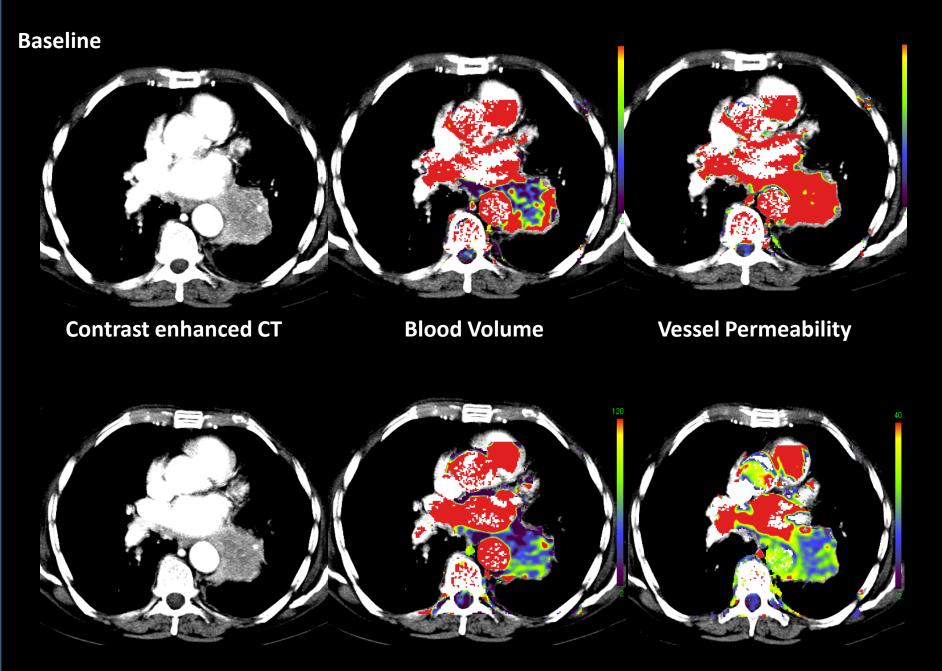
Phase I – Toxicities^a

- DLT reversible ataxia at 114mg/m², vasovagal syncope and motor neuropathy at 88mg/m²
- Other toxicities tumour pain, dyspneoa, hypertension, QTc prolongation

^a Rustin et al

Phase 1B study: CA4P & RT

- Rationale:
 - Potential synergy between CA4P and RT
 - CA4P targets blood vessels at the centre of the tumour
 - RT can target well vascularised viable tumour blood vessel at the tumour periphery
 - Non-overlapping toxicity



Cohort	1	Dose	М	ΤW	Th	FSS	М	ΤW	Th	FSS	δM	ΤW	Th	FSS	S M	ΤW	Th	FS	S M	ΤW	V Th	FS	S M	ΤV	V Tł	n F S	S M	ſΤW
1	NSCLC																											
	Radiation	27 Gy	R		R		R		R		R		R															
	CA4P	50 mg/m ²			С																							
2	NSCLC																											
	Radiation	27 Gy	R		R		R		R		R		R															
	CA4P	50 mg/m ²			С				С				С															
3	Prostate																											
		•	R	R R			R	R R	R	R	R	R R	R	R	R	R R	R	R										
		50 mg/m ²				С																						
4	Prostate			_		_				-		-				_		-										
	Radiation	· .	R	R R			R	R R			R	R R	R	R	R	R R	R											
-		50 mg/m ²				С				С				С				С										
5	Prostate				n	D	n		n	n			n	n				n										
		55 Gy	к	кк		к С	к	кк		R C	к	кк	к	к С	к	R R	к											
6	CA4P NSCLC	63 mg/m ²				C				C				C				С										
0	Radiation	27 Cz	R		R		R		R		R		R															
		50 or 63 mg/m ²			C		C		Ĉ		C		C															
7	SCCHN	of or op mg/m	~		0		0		0		0		0															
·	Radiation	66 Gy	R	RR	R	R	R	RR	R	R	R	RR	R	R	R	R R	R	R	R	RR	R	R	R	RR	R	R	R	RR
		50 or 63 mg/m ²				С				c				c				c				c	24			c		

C, CA4P treatment; CA4P, combretastatin-A4-phosphate; NSCLC, non-small-cell lung cancer; R, radiation treatment; SCCHN, squamous cell carcinoma of the head and neck.

Ng et al. Ann Oncol 2012

n=39 received 121 doses of CA4P DLTs at 63 mg/m2 No additional toxicity when administered with RT

4 hours post administration vascular disrupting agent